CLASS 6&7

BJT PARAMETERS AND BIASING

Observations:

- For an ideal transistor in the CE configuration, I_C for a fixed I_B is independent of V_{EC} for $V_{EC} > V_{EC(sat)}$. This condition is true if the effective width of the B is fixed.
- As the width of the depletion region in B of the B-C junction is dependent on V_{EC} , the effective width of B will also be dependent on V_{EC} . Therefore, I_C will be dependent on V_{EC} although $V_{EC}>V_{EC(sat)}$. For a fixed I_B and $V_{EC}>V_{EC(sat)}$, $I_C \uparrow$ when $V_{EC} \uparrow$. However, the increment is small when compared to the increment of I_C with the increase in V_{EC} when the transistor is in the saturation region.

- When $V_{EC} \uparrow$, B-C junction becomes more rb, depletion region of B-C junction \uparrow , effective width of B \downarrow . Less recombination happen in B (or the slope of the hole density in B \uparrow), and therefore $I_C \uparrow$.
- The phenomena where $I_C \uparrow$ when $V_{EC} \uparrow$ is called the <u>Early effect</u> or <u>base width</u> <u>modulation</u>.

In the active region, $I_C \approx I_E$ and is independent of $V_{BC} I_C \approx \alpha_0 I_E$ α_0 is the CB current gain.

Observations

- $V_{BC}\uparrow I_C\uparrow$ because when $V_{BC}\uparrow$, the B-C junction becomes more rb. The width of the effective B region (outside depletion) becomes smaller. Recombinations \downarrow . Hence, $I_C\uparrow$.
- At a fixed V_{BC} , if $I_E \uparrow I_C \uparrow$. This is because, $I_E \uparrow$ when $V_{EB} \uparrow$. As $I_C = \alpha_0 I_E$ and $\alpha_0 \approx 1$, $I_C \approx I_E$. Thus, $I_E \uparrow I_C \uparrow$.
- If $V_{BC} = 0$, there still exists a depletion region at the B-C junction. Fixed -ve ions in the depletion region of the C can still manage to attract the holes from B to cross the B-C junction and enter C. I_C exists. If the V_{BC} becomes -ve (i.e. V_C is more +ve than V_B), the width of the depletion region \downarrow and $I_C \downarrow$. When $V_{CB} \approx V_{ON}$, the depletion region's width ≈ 0 . At this time, the B-C junction becomes fb and $I_C = 0$.

minority E-B depletion B(n)Distribution of B-C depletion carriers in B for a region **pnp** region $P_n(0)$ transistor.

- (a) Active mode for $|V_{BC}| \ge 0$.
- Saturation mode with both **(b)** E-B and B-C junctions fb.

Observations

- Since the difference in the slope is not large when $V_{BC} > 0$ and $V_{BC} = 0$, I_C does not change much.
- $I_C = 0$ when one small forward voltage is supplied across the B-C junction (V_{BC} \approx -1 V for Silicon). Under this condition, the transistor is in the saturation region.
- The fb supplied to the B-C junction ۲ will increase the hole density at x=W until it reaches a value equals to the hole density at x=0. This means that hole gradient is the 0 and consequently I_C will reduce to 0.

$$I_{Cp} = A \left[-qD_p \frac{dp_n}{dx} \Big|_{x=W} \right], I_{Cn} = A \left[qD_C \frac{dn_C}{dx} \Big|_{x=x_C} \right]$$
$$\approx \frac{qAD_p p_{no}}{W} e^{\left(qV_{EB}\right)/kT} = \frac{qAD_C n_{Co}}{L_C}$$

Important observations:

 $\mathbf{I}_{\mathrm{E}} = \mathbf{I}_{\mathrm{B}} + \mathbf{I}_{\mathrm{C}}$

For the CB,

 $\mathbf{I}_{\mathrm{C}} = \boldsymbol{\alpha}_{\mathrm{o}} \, \mathbf{I}_{\mathrm{E}} + \mathbf{I}_{\mathrm{CBO}}$

where I_{CBO} is the C-B current when E is open ($I_E = 0$) and it is a minority carrier current. $I_C = \alpha_0 (I_B + I_C) + I_{CBO}$ $I_C (1 - \alpha_0) = \alpha_0 I_B + I_{CBO}$ $I_C = (\alpha_0 I_B + I_{CBO}) / (1 - \alpha_0) = [\alpha_0 I_B / (1 - \alpha_0)] + [I_{CBO} / (1 - \alpha_0)]$ $\alpha_0 / (1 - \alpha_0) = \beta_{DC} = CE DC current gain$ $\beta_{DC} = \Delta I_C / \Delta I_B$ $I_{CEO} = I_{CBO} / (1 - \alpha_0)$

where I_{CEO} is the leakage current when B is open ($I_B = 0$) and it is a minority carrier current.

$$\mathbf{I}_{\mathrm{C}} = \boldsymbol{\beta}_{\mathrm{DC}} \, \mathbf{I}_{\mathrm{B}} + \mathbf{I}_{\mathrm{CEO}}$$

region

$$\alpha_{o} / (1 - \alpha_{o}) = \beta_{DC}$$

$$\alpha_{o} = \beta_{DC} (1 - \alpha_{o})$$

$$\alpha_{o} + \beta_{DC} \alpha_{o} = \beta_{DC}$$

$$\alpha_{o} (1 + \beta_{DC}) = \beta_{DC}$$

$$\alpha_{o} = \beta_{DC} / (1 + \beta_{DC})$$

 $\beta_{DC} = \alpha_0 / (1 - \alpha_0); \text{ this expression shows that} \\ \beta_{DC} > 1 \\ \alpha_0 = \beta_{DC} / (1 + \beta_{DC}) \text{ ; this expression shows} \\ \text{that } \alpha_0 < 1 \\ \alpha_0 \approx 1. \text{ Thus, } \beta_{DC} >> 1. \\ \text{If } \alpha_0 = 0.99, \beta_{DC} = 0.99 / (1 - 0.99) = 99. \\ \text{If } \alpha_0 = 0.998, \beta_{DC} = 0.998 / (1 - 0.998) = 499. \\ \text{These results show that a small change in } I_B$

will cause a large difference in I_C.

From the output characteristics of the CE, there is still output current, I_C , flowing although $I_B = 0$ and this is the I_{CEO} which is the leakage current when $I_B=0$.

BIASING

- The BJT must be biased in order to operate it as an amplifier.
- A DC operating point must be set so that the V_{CC}/ signal at the input terminal can be amplified saturation and reproduced without any distortion at the I_{CQ} output terminal.
- For the CE amplifier, the DC operating point is I_C and V_{CE} (for npn or V_{EC} for pnp). The operating point must be in the active region in order for the BJT to operate as an amplifier.
- The DC operating point is known as the quiescent (Q) point. For the CE amplifier, the Q point is I_{CQ} and V_{CEQ} .
- With the correct biasing, the circuit need not be changed or redesign when another transistor from the same type is substituted or when the temperature changes. In other words, a biasing circuit needs to be stable.

To determine the operating point:

- The DC load line is drawn on the output characteristic to determine the operating current and voltage of the circuit. The intersection of the load line with the I and V axis depends on the circuit's schematic.
- A DC biasing point / quiescent (Q) point is determined from the load line in the active region. The Q point is a point on the load line that represents the current and voltage at the output of a transistor when there is no AC signal. The stability of a biasing point is influenced by the change in the parameters (as an example: β_{DC}) when the transistor is replaced by another transistor of the same type or by the change in temperature.

From Floyd, Electronic Devices, Sixth Edition.

186 BIPOLAR JUNCTION TRANSISTORS (BJTs)

Thermal resistance, junction to case

Thermal resistance, junction to ambient

Symbol	Value	Unit	
VCEO	40	V dc	
$V_{\rm CBO}$	60	V dc	
$V_{\rm EBO}$	6.0	V dc	
$I_{\rm C}$	200	mA dc	
$P_{\rm D}$	625 5.0	mW mW/°C	
P _D	1.5 12	Watts mW/°C	
$T_{\rm J}, T_{\rm stg}$	-55 to +150	°C	
		$\begin{array}{c c c c c c c c c c c c c c c c c c c $	

 $R_{\theta JC}$

 $R_{\Theta JA}$

Electrical Characteristics ($T_A = 25^{\circ}C$ unless otherwise noted.)

Characteristic		Symbol	Min	Max	Unit
OFF Characteristics					
Collector-Emitter breakdown voltage $(I_{C} = 1.0 \text{ mA dc}, I_{P} = 0)$		V _{(BR)CEO}	40	-	V dc
Collector-Base breakdown voltage $(I_{r} = 10 \text{ uA} \text{ dc} I_{r} = 0)$		V _{(BR)CBO}	60	_	V de
Emitter-Base breakdown voltage $(I_{-} = 10 \text{ µA dc} I_{0} = 0)$		V _{(BR)EBO}	6.0		V dc
$G_E = 10 \mu/(dc, 1C = 0)$ Base cutoff current $(V_{ee} = 3.0 \text{V dc})$		I _{BL}	-	50	nA dc
Collector cutoff current ($V_{CE} = 30 \text{ V dc}, V_{EB} = 3.0 \text{ V dc}$)		I _{CEX}	-	50	nA dc
ON Characteristics					
DC current gain $(I_{\rm C} = 0.1 \text{ mA dc}, V_{\rm CE} = 1.0 \text{ V dc})$	2N3903 2N3904	h _{FE}	20 40	Ξ	-
$(I_{\rm C} = 1.0 \text{ mA dc}, V_{\rm CE} = 1.0 \text{ V dc})$	2N3903 2N3904		35 70	=	
$(I_{\rm C} = 10 \text{ mA dc}, V_{\rm CE} = 1.0 \text{ V dc})$	2N3903 2N3904		50 100	150 300	
$(I_{\rm C} = 50 \text{ mA dc}, V_{\rm CE} = 1.0 \text{ V dc})$	2N3903 2N3904		30 60	_	
$(I_{\rm C} = 100 \text{ mA dc}, V_{\rm CE} = 1.0 \text{ V dc})$	2N3903 2N3904		15 30	_	
Collector-Emitter saturation voltage $(I_{\rm C} = 10 \text{ mA dc}, I_{\rm B} = 1.0 \text{ mA dc})$ $(I_{\rm C} = 50 \text{ mA dc}, I_{\rm B} = 5.0 \text{ mA dc})$		V _{CE(sat)}	=	0.2 0.3	V dc
Base-Emitter saturation voltage $(I_{\rm C} = 10 \text{ mA dc}, I_{\rm B} = 1.0 \text{ mA dc})$ $(I_{\rm C} = 50 \text{ mA dc}, I_{\rm B} = 5.0 \text{ mA dc})$		$V_{\mathrm{BE(sat)}}$	0.65	0.85 0.95	V de

83.3 200 °C/W

°C/W

A FIGURE 4-19

Partial transistor data sheet.